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We characterize a nonlinear full invariant of compact Banach-space maps: Let (X, ||.]|)
and (Y, ||.]|) be two Banach spaces and Pc(X,Y) be all compact maps which map
(X, [I.I) to (Y, ]I.]). Then each weak operator-topology subseries-convergent series
>°; Piin P.(X, Y) is also uniform-topology subseries-convergent iff each bounded map
from (X, |I.|) to (', ||.]l1) is a compact map. The necessary condition for each weak
operator-topology subseries-convergent series » ; P; in Pc(X,Y) to be also uniform-
topology subseries-convergent is that (X, ||.||) and (X/, |I.11) both contain no copy of c.
This necessary condition is not sufficient.

KEY WORDS: Banach space; compact map; full invariant.
PACS: 02.10 By, 02.10 Gd

1. INTRODUCTION

Amap Q : (X, |I.]) = (¥, |I.1|) is said to be a bounded (or compact, respec-
tively) map if for each bounded subset B of (X, |.||), Q(B) is a bounded (or
compact, respectively) subset of (Y, ||.]).

Let (X, |I.ID, (Y, |I.II) be two Banach spaces and P.(X, Y) the set of compact
maps from (X, ||.]|) to (Y, [|.]]), Po(X, ¥) the set of continuous compact polynomial
operators from (X, ||.||) to (Y, ||.II), K(X, Y) the set of continuous linear compact
operator from (X, |.||) to (Y, [|.]]).

As is known, studying the invariants is a crucial topic in Mathematics and
Physics. Li Ronglu, Cui Chengri, Cho Minhyung, Wu Junde and Lu Shijie proved
several interesting linear full invariants (Li ez al., 1998; Wu and Li, 1999; Wu and
Lu, 2002). In order to study nonlinear map-valued quantum measure theory, now,
we characterize a nonlinear full invariant.
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Let WOT, SOT and UOT be the weak operator topology, strong operator
topology and uniform operator topology on Pc(X,Y), respectlvely, ie. limy Py =
0 in the WOT <= foreachx € X,y € Y, lim, < Tyx, y >=0;lim, 7, =0in
the SOT <= for each x € X, lim, T,(x) = 0; lim, 7, = 0 in the UOT <= for
each bounded subset A of X, lim, 7T;,x = 0 uniformly with respect to x € A.

It is clear that WOT C SOT C UOT.

Let 7o be a topology on Pc(X, Y). A series ), P; in Pc(X, Y) is said to be 7o-
subseries convergent if for each sequence {k;} in N, there exists an Py € Pc(X,Y)
such that the series Zj Py; is To-converge to Py.

If mo denotes the space of all scalar sequence (¢;) such that {z; : j € N}
is a finite set. It is clear that }; P; is to-subseries convergent is equivalent to
for each (¢;) € my there exists a Py € Pc(X, Y) such that the series Zj t;P; is
Tp-convergent to Py.

Definition 1. A property of Pc(X, Y) is said to be a full invariant of Pc(X,Y),
if the property holds for some topology 79 of Pc(X, Y) between WOT and UOT,
then it also holds for all topologies t of Pc(X, Y) between WOT and UOT.

In order to prove our conclusion, we first need the following lemmas:

Lemma 1. (Wilansky, 1978) (I', o(I', mo)), (I', o (I', %)) and (I', |.||) have
the same bounded sets.

Lemma 2. (Wuand Li, 2000) If (X, t1) is a barrelled locally convex space, then
the following are equivalent:

(1) (X', B(X', X)) contains no copy of (>, ||.|lsc)-

(2) (X', B(X', X)) contains no copy of (co, |-|ls0)-

(3) Each continuous linear operator T : (X, 1)) — (', ||.Ih) is a compact
operator.

2. MAIN THEOREM AND PROOF

Now, we prove the following main result:

Theorem 1. Let (X, ||.]|) and (Y, ||.|) be two Banach spaces and Y # 0. Then
the subseries convergent property is a full invariant of Pc(X, Y) iff each bounded
map T : (X, |l.I) = ", I.Ih) is a compact map.

Proof: Sufficiency. Without loss generality, let the series ), P; in Pc(X, Y) be
weak operator topology subseries convergent. It follows from (Kalton, 1980) that
> ; Pj must be strong operator topology subseries convergent. Now, we show that
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if each bounded map 7 : (X, ||.]) — (', ||.]l;) is a compact map, then Z]- P;jis
uniform topology subseries convergent. '

If not, there exists a subsequence {k;} of N, a bounded subset B of (X, ||.||) and
Py € Pc(X,Y) such that for each x € B, the series ) j Py, x is norm convergent
to Pox, but > ; Pr;x does not converge to Pyox uniformly with respect to x € B.
Thus, there is an &y > 0 such that for each p € N, thereare m,n e Nym > n > p
and x € B satisfying

> 0. ey

m
E ijx
j=n

It follows from (1) inductively that we can obtain two sequences n| < m; <
ny <mp <...<nyg <my <...in Nand x; € B such that

ny
Z Pr;xgq

J=nq

> €o0,q € N.

By the Hahn—Banach theorem, there is a sequence { y:]} of Y’ such that for each
g €N, |ly,ll < T and

mg
vy | D0 Poxg | = 20 )
Jj=nq
Let Y} be the linear closed hull of { P x,, : j,n € N}in (Y, ||.|]). Then (Yo, ||.|))
is a separable subspace of (X, ||.||) . Thus, we can obtain a subsequence { y(;l_} of
{ y;] }, without loss of generality, we may assume that { y;[} is just { yc; }, and y(/) eY

with ||yl < 1 such that for each y € Yo, lim, y, (y) = yo(y) (Kothe, 1969).
For P € Pc(X, Y), we show that if { Px,} C Y, then

lim sup{|(y, — yo) Pxa} = 0.
Otherwise, there exist a subsequence {y,;,} of {y’q} , a sequence {x;,} C {x,} and
&1 > 0 such that

(g = Yo) P = e1,1 €N. 3)

Since P € Pc(X,Y), so the set {Pxy,} is relatively compact in (Y, ||.]]). It
follows from {Px,} C Yo that {Px,} is a relatively compact subset of the norm
space (Yo, ||.]1), and is also a relatively sequentially compact subset of (Y, ||.|).
Thus, without loss of generality, we may assume that there exists a yy € Yy such
that {|| Pxx, — yoll} converges to 0. Note that

G, = Y Pt < 10, — Y)(Paxgy — o)l + 1, — ¥0)ol
< llyg, = ¥oIIPxi, = yoll + (3, — ¥0)ol.
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It follows from |ly;, — yoll < 2, {lIl Pxx, — yoll} — O and {y;, (y0)} = yo(yo) that
lilm(y(’” — yo)Pxy, = 0.

This contradicts to (3). So the conclusion holds.

Furthermore, since the series Y ; Pj is strong operator topology subseries
convergent, for each (¢;) € my, there exists a P € Pc(X, Y) such that Zj tjPjis
strong operator topology convergent to P. So for each y’ € Y/ and x € X,

> t(Pix.y') = (Px.y').
J

It is easy to prove that ({(P;x,y )72, €l'. It follows from Zj ti{Pjx,y') =
(Px,y’) that the map: x — ({(Pix,y))?2, is a bounded map: (X, |.|) —
(', o(I', mg)) and hence from Lemma 1 that it is also a bounded map of (X, ||.|) —
(', II.II). Thus, the condition in Theorem 1 shows that {({P;x, y’) 2, :x € B}
is a relatively compact subset of (I', ||.|[1). So, it follows from the character-
istic of the compact subsets of (I', ||.||;) that the series Zj’;l tj(Pjx,y’) con-
verges to (Px, y’) uniformly with respect to x € B. Now, we consider the infi-
nite matrix [Z;’an ¥ Pilij. For each j € N, note that Zi":’nj P, € Pc(X,Y) and

oo . Pix,} € Yo, we have

i=n

D Ok — ) Piln)| =0.

1=n;

lim sup
k n

For each strictly increasing sequence of positive integers {j,}, since the se-

ries Y ; Pj s strong operator topology subseries convergent, there exists Py €
Pc(X,Y) such that the series > | Zlm:’n/ P; is strong operator topology con-
vergent to Py. Therefore, the series Zf‘;l > ¥ Pi(x) converges to y; Po(x)
uniformly for x € B. Thus we have

ol K

Note that { Pox,} Y is obvious. Therefore, limy sup, {|(y; — yo) Po(xn)|} =
0. It follows from Antosik—Mikusinski basic matrix theorem (Swartz, 1996) that

my
lim sup { > iPi) } =0.

i=nk
This contradicts to (2) and the sufficiency is proved.
Necessity. Let P be a bounded map from (X, ||.|) — (', |.]l1). For x €
X, denote Px = (P(x); ‘]’il Pick y € Y,y #0 and define P;: X — Y for

mj,
L=Njy

0o My,

DN WePi) = yiPolxn)

r=1i=nj
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Pix = P(x);y. It is obvious that P; € Pc(X,Y). For each strictly increas-
ing sequence {k;} in N, let Pox = Zj P(x)i;y. Then Py € Pc(X, Y) and Zj Py,
is strong operator topology convergent to Py. So Y ; Pi; is uniform convergent to
P,. By the characteristic of compact sets in (I', ||.||;) again that we can prove the
map P is a compact map. The Theorem is proved. O

3. AN INTERESTING EXAMPLE

Let (X, ||.||) be a Banach space. A series Zj xjin (X, ||.]|) is said to be a weak
unconditionally Cauchy series if for each f € X', the series ) i 1 f(xpl < oo. We
may prove that ) ;X in (X, [I.]) is a weak unconditionally Cauchy series is equiv-
alent to for each (;) € co, the series ) | X is convergent in (X, ||.]|) (Aizpuru
and Perez-Fernandez, 2000), and if > X in (X, ||.]|) is a weak unconditionally
Cauchy series, then for each bounded subset B of ¢y, the set {> jrjxj ;) € B}is
a bounded subset of X. If the series ) X in (X, ||.]|) is norm topology subseries
convergent, then ) ;jXj 1s said to be unconditionally convergent. M. Gonzalez
and J.M. Gutierrez proved the following important conclusion (Gonzalez and
Gutierrez, 2000):

Lemma 3. Let P be a continuous polynomial operator of mappings (X, ||.|)
into (Y, ||.11). Then the following assertions are equivalent:

(B) Given a weak unconditionally Cauchy series Zj xj in (X, |11, if for
each bounded subset B of cy, the set {P(Zj tjxj): (tj) € B} is a rel-
atively compact subset of (Y, ||.|1), then the series Z_,' xjin (X, |I.D) is
unconditionally convergent.

(D) If the sequence {x,} in (X, |.||) is equivalent to the cy-basis, then there
exists a bounded subset B of ¢y such that the set {P(Zj tjx;): (t;) € B}
is not relatively compact in (Y, |.|).

It follows from Lemma 3 that if (X, ||.||) contains a copy of cp, then there
exists a continuous polynomial operator P : (X, ||.||) — (Y, ||.|l) which is not a
compact polynomial operator. Thus, it follows from Lemmas 2 and 3 that we
have:

Theorem 2. Let (X, ||.||) and (Y, |.ll) be two Banach spaces. If each weak
operator topology subseries convergent series y_; T; in Py(X, Y) is also uniform
topology subseries convergent, then (X, ||.||) and (X', ||.||) both contain no copy

of co.

Since /% is a Hilbert space and /> = (/%) contain both no copy of cy, so the
following example shows that the converse of Theorem 2 does not hold.
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Example 1. Let X =[? and define the polynomial operator P :[> — I' by
P({t;}) = {tf}. Then P :1?> — [ is a continuous polynomial operator which is
not a compact polynomial operator.

Example 1 showed that the following problem is important and difficult:

Problem 1. Characterize the Banach space (X, ||.||) such that each continuous
polynomial operator P : (X, ||.|) — (1, ||.]l1) is a compact polynomial operator.
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